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Unification and higher-derivative gravity 

D K Ross 
Physics Department, Iowa State University, Ames, Iowa 5001 1, USA 

Received 8 March 1983 

Abstract. We consider higher-derivative theories of gravitation in which ORz and 
aR,,R”’ terms are present in the Lagrangian density, in addition to the usual scalar 
curvature R term. We show that using this Lagrangian to obtain the field equations in a 
fibre-bundle unification of electromagnetism and general relativity leads to unacceptable 
modifications to Maxwell’s equations even for very small a. Since the Kaluza-Klein 
unification and related fibre-bundle unifications of general relativity with a non-Abelian 
gauge group are major successes of the geometrical ideas behind general relativity, these 
results suggest that adding an R,,,Rw” term is not a profitable approach to future gravita- 
tional theories. The R 2  term, on the other hand, is not ruled out by these considerations. 

1. Introduction 

Higherderivative theories of gravitation, in which R and Rp,,R @” terms appear in 
the Lagrangian density in addition to the usual scalar curvature R, have been suggested 
by various authors (Utiyama and DeWitt 1962, Sakharov 1967, Deser 1976). Interest 
in these theories has grown considerably since Stelle (1977) showed that they are 
renormalisable. As he points out, however, these theories involve massive spin-two 
excitations with negative definite energy. In the quantum theory these states can be 
cast into a form with positive definite energy but with negative norm. The negative 
norm states, in  turn, lead to unitarity problems (Pais and Uhlenbeck 1950). These 
unitarity problems must be resolved before a sensible physical interpretation can be 
given. There are also a variety of other undesirable features in these theories (Pech- 
laner and Sex1 1966, Buchdahl 1970, Ruzmaikina and Ruzmaikin 1970, Michel 1973, 
Havas 1977). 

These theories, however, have other nice properties in addition to renormalisability. 
Macrae (1981) showed that these higher-derivative terms give a Euclidean functional 
integral convergent on the metric conformal factor. Tomboulis (1980) found that 
quantum gravity is asymptotically free if these terms are included. Other work includes 
an investigation of the effect of these terms on cosmology by Macrae and Riegert 
(1981). 

In the present work we will investigate the effects of R 2  and R,,,Rpu terms on the 
unification of general relativity with the electromagnetic field. One of the major 
conceptual ingredients of general relativity is the idea of the geometrisation of physics. 
Over 50 years ago Kaluza (1921) and Klein (1921) showed that general relativity 
could be unified with electromagnetism in a five-dimensional geometry using the scalar 
curvature R of this manifold as the Lagrangian density. The idea of geometrisation 
lay fallow until recently when it has begun to bear fruit in the geometrical fibre-bundle 
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approach to gauge theories. Kerner (1968) and Cho (1975) put the work of Kaluza 
and Klein on a firmer mathematical footing using fibre bundles and generalised it to 
an n-dimensional non-Abelian gauge group. The Lagrangian density is again the 
scalar curvature of the (4+n)-dimensional fibre bundle with space-time as the base 
space, Rather miraculously, this even works for supergravity, using four anticommut- 
ing generators in the gauge space (Ross 1979, 1981). The self-consistency of these 
unifications can be viewed as one of the major theoretical successes of general relativity 
and its scalar curvature Lagrangian density. 

In the present work we will investigate what happens to a Kaluza-Klein type 
unification if R 2  and RABRAB are also included in the Lagrangian density of the fibre 
bundle. Specifically, we will consider the electromagnetic case with U ( l )  as the 
structure group and space-time as the base space of the fibre bundle. The variational 
principle for the field equations will be taken to be 

S ~ ' X ( - ~ ) ' ' ~ ( R / ~ ~ ~ G + ~ R A B R ~ ~  -/3R2) = O  (1) 

where y is the trace of the metric for the five-dimensional fibre-bundle space. R and 
R A B  are the scalar curvature and the Riemann curvature tensor for this five- 
dimensional space. (Greek indices refer to space-time while A ,  B,  C refer to the 
five-dimensional fibre-bundle space.) If a =/3 = 0, we get the usual Kaluza-Klein 
theory. 

We show below that the Maxwell equations resulting from (1) are modified in an 
unacceptable way even for very small a so that the unification of general relativity 
and electromagnetism is spoiled. This result strongly suggests that R,,,R terms 
should no? be included and that such terms are not a promising avenue for future 
theories of gravitation. 

We will define our fibre bundle and work out the new unified field equations in  
3: 2 below. In 3: 3 we look at the Maxwell sector of these equations in  detail and in 
3: 4 we draw our conclusions. 

2. Fibre-bundle structure and field equations 

We consider a fibre bundle with U(1) as the structure group and space-time with 
metric g,, (signature -1, +1, +1, +1) as the base space. We can choose a coordinate 
basis 6, = 8, for the base space with commutation relations 

[5,, ("1 = 0. ( 2 )  
For a basis for the gauge group we can choose a left-invariant vector field t1 which 
can also be viewed as a basis of the Lie algebra. The commutation relations 

El, 511 = 0 (3) .  
are trivial for U(1). A subscript or superscript 1 always refers to the gauge space or 
vertical subspace of the fibre bundle. In the five-dimensional fibre bundle, we will 
work in the horizontal lift basis (Cho 1975) for convenience where the commutation 
relations become 

[6T, ( 7  1 = 0, ti,, {"I = - F : Y 6 : ,  [L, 67 1 = 0. (4) 
FLY can be written as the usual electromagnetic field tensor F," to within a units 
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transformation. We will often delete the 1 superscript in the following. In this basis, 
the fibre-bundle metric Y A B  is particularly simple and is given by 

Without loss of generality we can take the U(1) metric g l l  to be a constant and in 
particular 1. The usual choice in terms of structure constants, of course, is not possible. 
We pay the price for using this non-coordinate basis in extra terms in the Christoffel 
symbols, 

r",= :(yAD,B +yBD,A - y A B , D ) y D E  -9GA - b c B ~ h D E  - $ Y A ~ H ~ B Y ~ ~  (6) 

where H:,, =FLY and all other HACB vanish. Working this out gives 

r;; , =r '  , 1  - -iF," (7) 

with all other r&, vanishing. Ordinary derivatives with respect to the 1 coordinate 
always vanish. For completeness, we also have 

(8) 

r" = 1  s v  r1 = L  1 
/AY 2g h Y  + g,s,,  - g w , s I ,  cl" 2FFv, 

A RFG = r F G , A - r ~ A , G + r ~ G r " , - r = A r ^ , - r ~ E f , H E G A  

which works out in the various sectors as 

(9) R =R(E)-L 4F,aFFa 9 
( E )  -$F Fa R,,  = R , ,  F a  Y 9 

R -1 R W 1 = R 1  Ir = - i  2FQ,,a, 1 1  - 4FFvFFv, 
where (E) refers to the usual Einstein expression and a semicolon denotes the usual 
covariant derivative. 

It should be emphasised that even though we work in the horizontal lift basis, any 
other basis would give equivalent final results. Kerner (1968), for example, works in 
the local direct product basis, which is a coordinate basis with a more complicated 
form for Y A B .  

To obtain field equations, we will assume the Lagrangian given in (1). a and p 
are constants. Note that the only other possible quadratic term is RAE,-& , This 
need not be included (Stelle 1977) since it can always be written in terms of R A B R A B  
and R '. We also note that no source terms are included in (1) in the spirit of unification. 
These of course could be inserted. Thus our Maxwell equations will come out 
sourceless, and the source of the gravitational field will only be the energy momentum 
tensor of the electromagnetic field. 

We now want to carry out the variation indicated in (1) to get field equations. 
This is a rather lengthy calculation which yields the final result 

ABCD 

where a single vertical bar denotes ordinary differentiation and a double vertical bar 
denotes covariant differentiation in the five-dimensional fibre-bundle space. Note 
that the expression in the braces is symmetric under A - B .  We now have to be a 
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bit careful. The variation S g A E  is not completely arbitrary but must preserve the 
original form of the metric (5) with g l l  = constant. This is most easily accomplished 
by setting Sg" = 0. An equivalent and somewhat more elegant procedure is to formally 
integrate out the gauge degree of freedom in ( 1 )  as Cho (1975) does. The same thing, 
of course, is done in the usual Kaluza-Klein theory. In that case a = p  = O  in (10). 
Using ( 9 )  it is readily apparent that the p,  v sector in  (10) gives the Einstein equations 
correctly coupled to the electromagnetic energy momentum tensor. (Letting FLY + 
(16 .rrG/~~)~ '~F, ,  gives conventional units for F,".) The p ,  1 sector gives F,", = 0 
and the 1, 1 sector does not contribute since Sg" = 0. If g" were allowed to vary, 
the unphysical equation F,J*" = 0 would result. 

In the present case for non-zero a and p, using S g " = 0  in (10)  with the other 
metric variations arbitrary gives the p,  v sector field equations 

( 161rG)- ( - R,, + ig,,,R ) - p ( - 2RR,, + iR  2g,, 

-2g,,Ric~~c +R$,,I, + R  v~,,)+a(-2R,,cR,C +$RcdCDg,,  

+ R c,i/viic + R cy~ipi~c 1 = 0 (11) CD 
- g w s  cDIIDIIC -Rv,llC IDY 

and the p,  1 sector field equations 

( - R, 1)(167G I - '  -pi - 2RR, 1 + Ri,i,i + Rli,~, 1 
( 1 2 )  + a i  -2R,cRiC -R,I , ICIIDY +RCpiiiiic +RCi~i,iic)=O. 

R and R,, in these equations are given by (9) .  The remaining equation for the 
electromagnetic field arises from the fact that i, and 6: must satisfy the Jacobi identity. 
This gives 

( 1 3 )  

CD 

FYSI, +FS, ,Y  +F,YIS = 0 

independent of the Lagrangian assumed. 

3. Modified Maxwell equations 

We now want to work out the field equations ( 1 1 )  and ( 1 2 )  in terms of R E ,  R'E' ,  
g,, and F,,. We are interested in seeing whether these field equations are sensible 
or whether they are at variance with experiment. Equation ( 1 1 )  is not very useful for 
this purpose. It reduces to the usual Einstein equation, correctly coupled to the 
electromagnetic energy momentum tensor in the low-energy limit. Since even this 
low-energy equation with electromagnetic sources has not been tested by experiment, 
the experimental testing of correction terms is out of the question. For this reason 
we will concentrate on the Maxwell sector and equati,on (12 ) .  If a = p  = 0 this just 
gives the sourceless Maxwell equation F'";,, = 0. We are interested in the correction 
terms arising for non-zero a and p. 

Using (9) and (7) along with the definition of a covariant derivative lets us write 
out (12)  after a long, tedious calculation as 

P P ; @  = 0, (14)  
where the semicolon denotes the usuzl covariant derivative and 

- ~ ~ @ ( 3 2 ~ ~ ) - l  + P ( R ( E ) - $ ~ ~ ? ) F @ P  

+ a ( $ a ~ p @ ~ ~ @  + R ( E ) P ~ P ~  - R ( E ) P j w v  - + F F ~ ; ~ ; P  + +FPT :F 1. (15) 
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9”’ is completely antisymmetric. If a source current were added on the right-hand 
side of (14), this current would be conserved identically from this antisymmetry. We 
would like to see if (15) has observational consequences. First, let us replace F,, by 
( 1 6 ~ G / c ~ ) ” ~ F ~ ,  in order to put the electromagnetic field tensor in conventional units 
and define 

1: = 3 2 ~ G a ,  1; = 321rGp (16)  

where I ,  and I ,  have dimensions of length. The Newtonian limit of the static field 
requires that 3p s a  3 0  and that a and p be small or unacceptable modifications of 
Newtonian gravity would result (Stelle 1977). Thus I ,  and 1, defined in (16) are real 
lengths. We can also define &’ = - ( 6 4 ~ G c  ) 4 1/2  ” P  9 to get 

&”” =F”” - /i(R‘E’-F,pF6P 4.rrG/c4]F”” 

- 1 ~ [ F ~ p F 6 p ( 4 ~ G / ~ 4 ) F ~ Y + R ” ~ w s  -RYZ”’ -;Fw6;6“ +iFU6;6;”]. (17) 

Let us look at this in  the limit of nearly flat space and laboratory scale electromagnetic 
fields. If we also assume that 1, and lP are small and comparable in magnitude, we 
find that the dominant correction terms are the last two terms in (17). Then our fie’ ’ 
equation (14) can be written 

where we now have ordinary derivatives. The last term in (18) vanishes since FP6 is 
antisymmetric. Equation (18) can then be written in the form 

Q” +iIZOQ” = 0 ,  (19) 

where Q” = F”’1,. Note that we have the constraint Q ” 1 ,  = 0. The solution to this 
Klein-Gordon type equation is 

Q ” = F F P I p  = A ”  s ink6xs+B” coskax6 (20)  

where ksks = 211: and Asks = BsKs = 0 from the constraint. We now note that even 
though we have no sources in the theory, nonetheless (20) looks like the usual Maxwell 
equation with a four-current 

(21) 

This strange travelling wave current can have (a) large amplitude components, (b) 
laboratory scale wavelengths and (c) laboratory scale frequencies depending on the 
choice of parameters even if I ,  gets very, very small. This current is obviously ruled 
out by experiment. The fact that Maxwell’s equations are modified in an unacceptable 
way even for very small values of I ,  or of a in the original Lagrangian (1) is a reflection 
of the fact that the limit I, + 0  is a highly singular point for the differential equation 
(19). The 1; terms in (17) do not contribute to the lowest-order modifications of the 
Maxwell equations looked at above. Thus pR2 terms can enter the Lagrangian (1) 
without dramatic effects on the Maxwell equations. However, in  many considerations 
such as asymptotic freedom (Tomboulis 1980), for example, a and p come in together 
in a particular combination so that eliminating a terms and leaving p terms in (1) 
would spoil their argument. 

J” = A ”  sin ksxs + B ”  cos kSxs. 
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4. Conclusion 

We found above that if the Lagrangian (1) is used in a Kaluza-Klein type unification 
of gravity and electromagnetism, then the a R A a A B  term in the Lagrangian modifies 
the resulting Maxwell equations in an unacceptable way even for very, very small a. 
Since the Kaluza-Klein unification and related unifications using non-Abelian gauge 
groups in fibre bundles are major successes of the idea of the geometrisation of physics 
embodied in general relativity, this result suggests that modifying general relativity 
by adding such a term to the Lagrangian is not a profitable approach to future 
gravitational theories. The p R 2  term in (l), on the other hand, is not ruled out by 
these considerations. 
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